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Benzyne was first discussed over a century ago by Stoermer and

Kahlert! Fifty years later, Roberts and co-workers reported their
landmark isotopic labeling studies on the KiNhiediated reaction

of chlorobenzene that left little doubt about the existence of benzyne

as a highly reactive intermediateSince then, the generation,

structure, and reactivity of benzynes have been studied by synthetic

organic and physical organic chemidtalthough ortholithiated
haloarenes are often used to generate benZhesyunderstanding

of coordinating solvents in the key elimination step is based largely

on empirical observatiorfs.Moreover, evidence supporting or
refuting a central importance of aggregation is nonexistent.
As part of a program to identify nicotinic receptor agonists as

potential aids for smoking cessation and other neurochemically

mediated conditionswe observed that the reaction of 1-chloro-
3-fluorobenzenel) with n-BuLi affords intermediate benzyn&s
and3 (eq 1) that can be trapped to form bicycloadduttnd5.8

Unexpectedly, the key elimination step displays a pronounced

solvent-dependent regioselectivith combination of structural and

rate studies described herein provides the first detailed view of how
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Figure 1. (a)®Li NMR spectrum of 0.2 M §Li]2-chloro-6-fluorophenyl-

the mechanism influences the rates and regioselectivity of the key |ithjum (6) in THF (10.3 M) with toluene cosolvent at100 °C. (b) 23C

elimination step.
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6Li and 3C NMR spectra recorded ofLi]2-chloro-6-fluorophen-
yllithium (6) prepared fromi and recrystallizecPLLi] n-BuLi at —100
°C10 show a single species in both neat THF and THF/toluene
mixtures (Figure 1). ThéLi—13C, 6Li —19F, and®F—13C couplings
and multiplicitied! are consistent with aryllithium monomérThe
2Je_c(ipsoy coupling constant of 130.3 Hz is substantially larger than
the analogous 19.8 Hz coupling in 1,3-dihaloareh® On a

NMR spectrum of 0.4 MLi]-6 in neat THF at—100 °C.

combination of inductive stabilization of the charge and steric
inhibition of aggregation®16

Rate studies were carried out by treating THF/toluene solutions
of 1 and spiro[2.4]hepta-4,6-diene withBuLi at —25 °C. Under
these conditions, aryllithiund is generated instantaneously. The
initial rates” for the formation of intermediate benzyn2sand 3
are monitored by following the loss of and formation of
bicycloadductg} and5 via GC analysis. Aren& was maintained
in 0.2 M excess to aryllithium concentrations. The initial rates were
independent of the concentration of spiro[2.4]hepta-4,6-diene
(maintained at>20% molar excess), indicating that the halide
elimination is irreversiblé2 There was no evidence of downward
curvature that would indicate autocatalysis by the lithium halide.
The rate constant for the loss ©fkonsag)) Corresponds to the sum
of the rate constants for formation of benzyreand 3 (Kobsap) +
kobsdg)), Which, in turn, were determined by monitoring the ratio of

practical note, thé% in the arene serves as an excellent surrogate cycloadductst and5 (Kobsagy/Kobsdg))-

for an inaccessiblé3C label at theSLi-bearing (ipso) carbon.

Loss of aryllithium®6 is first order in6 in both 0.3 and 6.8 M

Although we do not have a spectroscopic measure of solvation THE (Kobsag O [6]°), which, in conjunction with NMR spectroscopic

number, DFT calculations (B3LYP/6-31G*) show that serial
solvation of the monomer is exothermic up to the trisolVate.
Assignment of the monomer as the trisolvétes also consistent
with conventional views of lithium as preferring four coordinatién.
The exclusive formation of monomérpresumably stems from a
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studies, indicates a monomer-based mechahisforeover, the
independence of thed[.[5] ratio on the initial concentration d&
confirms that elimination of LiF and LiClkobsdey and Kopsdg),
respectively) both proceed via transition structures of equivalent
(monomeric) aggregation state.

The THF-concentration-dependent rates are particularly revealing
(Figure 2). The overall rate at which aryllithiugreliminates lithium
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Figure 2. (a) Plot ofkebsag) VS [THF] in toluene cosolvent for the formation
of benzynes2 and 3 from 6 (0.2 M) at —25 °C. The curve depicts the
result of an unweighted least-squares fikégsag) = K[THF]" + K (k= (4
+0.4) x 105 n= —1.12+ 0.09,k = (7.3 £ 0.3) x 10°4. (b) Plot of
Kobsdg) VS [THF]. kobsdg) = K[THF] + K (k= —(1 £ 9) x 106, Kk = (7.1
+ 0.2) x 1074). (c) Plot ofkobsdg) VS [THF]. kopsap) = KITHF]" + k' (k =
(42+06)x 104 n=-11+0.1,k = (14 4) x 1079).
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halide kobsag), curve a) displays a profile that derives from the
superposition of a [THF]-independent elimination of chlorikigsg
O [THF]®, curve b) and inverse-first-order dependence on fluoride
elimination Kobsagy U L/[THF]*=01, curve c).

The structural and rate data are fully consistent with the

mechanism outlined in Scheme 1. The solvent-dependent regiose-

lectivity clearly derives from the LiF elimination requiring THF

dissociation. Presumably, the lower solvation number enhances a

highly stabilizing L-F interaction'**1® as implied in transition
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groups clearly depends on the reaction conditions and mechahism.

In our opinion, caution should be exercised when using categorical

rules about halide reactivities in a more general sense.

We are currently studying other 1,3-dihaloaryllithiums both
experimentally and computationally. These investigations will be
described in due course.
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